Abstract

We have suggested the use of ethyl acetate for extraction of hydroxyl or superoxide radical adducts of the spin trap phenyl N-tert-butyl nitrone (PBM). The technique produced EPR spectra with narrow line widths, the radical adducts were more stable, and there were sufficiently large differences between the isotropic nitrogen hyperfine coupling constant (αN) and the beta hydrogen coupling constant (αHβ) for both the hydroxyl and superoxide radical adducts to allow their simultaneous quantitation in mixtures. However, Kalyanaraman, Mottley, and Mason have suggested that our assignments of αN and αHβ were incorrect and that extraction of spin-trapped adducts into ethyl acetate is not as useful as we had proposed. This paper demonstrates that their objections are unfounded and are based on a computational error that they made when they attempted to calculate the hyperfine splittings in their spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.