Abstract

In many advanced fields of optical technology, progresses are extremely dependent on reliable characterization procedures employed for quality assessment in volume manufacturing as well as for the optimization of high performance optical components. With the rapid development of laser technology and modern optics, especially optical metrology gained of importance for the quality management in the industrial production environment and also for research in optical components. Besides absorption and scatter losses, the spectral characteristics and laser induced damage thresholds are considered nowadays as common quality factors, which are often indicated in optics catalogues and are considered by the customers for the design of optical systems. As a consequence of this trend, standardization of measurement procedures for the characterization of optical components became a crucial point for the optics industry and for critical applications of optical components in laser systems as well as conventional optical devices. During the last decade, adapted standard measurement techniques have been elaborated and discussed in the Technical Committee ISO/TC 172 of the International Organization for Standardization (ISO) resulting in practical International Standards or Draft Standards for the measurement of optical absorption, scattering, reflectance and laser induced damage thresholds. In this paper, the current state of standardized characterization techniques for optical components is summarized. Selected standards for the measurement of absorption (ISO 11551), scattering (ISO/DIS 13696) and laser induced damage thresholds (ISO/DIS 11254, Parts 1 and 2) will be described and discussed in view of recent trends in laser technology and its applications in semiconductor lithography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.