Abstract

ObjectivesClostridioides difficile is an emerging enteric pathogen that causes nosocomial diarrhoea in adults. The excessive cost of commercial molecular tests restricts the access of developing countries to its diagnosis. This study aimed to develop and validate in-house quantitative polymerase chain reaction (qPCR) targeting the C. difficile toxin B gene (tcdB) using two detection methodologies—SYBR Green and hydrolysis probes—for the diagnosis of C. difficile infection (CDI). MethodsGlutamate dehydrogenase (GDH) plus toxigenic culture was the standard reference diagnostic method. The SYBR Green method and hydrolysis probes were used to study 392 samples simultaneously to assess the diagnostic value of these real-time PCR assays in detecting CDI from clinical samples. ResultsThe SYBR Green and hydrolysis probe assays showed 97.9% and 87.5% sensitivity; 99.1% and 100.0% specificity; 94.0% and 100.0% positive predictive value; 99.7% and 98.3% negative predictive value; and 99.0% and 98.5% accuracy, respectively. ConclusionsThe two qPCR methodologies evaluated could offer an adequate tool as part of an algorithm in the laboratory diagnosis of CDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.