Abstract

The matter in our Universe comes in two flavors: dark and baryonic. Of these, only the latter couples to photons, giving rise to the well-known baryon acoustic oscillations and, in the process, generating supersonic relative velocities between dark matter and baryons. These velocities-imprinted with the acoustic scale in their genesis-impede the formation of the first stars during cosmic dawn (z∼20), modulating the expected 21-cm signal from this era. In a companion paper we showed, combining numerical simulations and analytic models, that this modulation takes the form of robust velocity-induced acoustic oscillations (VAOs), with a well-understood shape that is frozen at recombination, and unaffected by the unknown astrophysics of star formation. Here we propose using these VAOs as a standard ruler at cosmic dawn. We find that three years of 21-cm power-spectrum data from the upcoming HERA interferometer should be able to measure the Hubble expansion rate H(z) at z=15-20 to percent-level precision, ranging from 0.3% to 11% depending on the strength of astrophysical feedback processes and foregrounds. This would provide a new handle on the expansion rate of our Universe during an otherwise unprobed epoch, opening a window to the mysterious cosmic-dawn era.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.