Abstract

We introduce the notion of standard (Kleshchev) multipartitions and establish a one-to-one correspondence between standard multipartitions and irreducible representations with integral weights for the affine Hecke algebra of type A with a parameter q∈C× which is not a root of unity. We then extend the correspondence to all Kleshchev multipartitions for Ariki-Koike algebras of integral type. By the affine Schur–Weyl duality, we further extend this to a correspondence between standard multipartitions and Drinfeld multipolynomials of integral type whose associated irreducible polynomial representations completely determine all irreducible polynomial representations for the quantum loop algebra Uq(glˆn). We will see, in particular, the notion of standard multipartitions gives rise to a combinatorial description of the affine Schur–Weyl duality in terms of a column-reading vs. row-reading of residues of a multipartition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.