Abstract

In this research, both the standard molar enthalpy of formation in the crystalline phase and in the gas phase of 3-methylglutaric anhydride was calculated from experimental data. The temperature and enthalpy of fusion, as well as the molar heat capacity in solid phase was calculated by differential scanning calorimetry; the molar enthalpy of sublimation at 298.15 K by the Knudsen effusion method, the molar enthalpy of vaporization at 298.15 K by thermogravimetric analysis, and the standard massic combustion energy by combustion adiabatic calorimetry. Since 3,3-dimethylglutaric anhydride presented crystal transitions (with endothermic points at 352.76 K, 356.98 K and 397.15 K), some of its thermochemical properties were estimated from the functional group-contribution methods proposed by Benson, Gani and Naef and from application of Machine Learning based models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.