Abstract

A procedure is derived for computing standard errors in random intercept models for estimates obtained from the EM algorithm. We discuss two different approaches: a Gauss-Hermite quadrature for Gaussian random effect models and a nonparametric maximum likelihood estimation for an unspecified random effect distribution. An approximation of the expected Fisher information matrix is proposed which is based on an expansion of the EM estimating equation. This allows for inferential arguments based on EM estimates, as demonstrated by an example and simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.