Abstract

To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in distinguishing invasive placentas. A total of 53 patients with invasive placentas and 47 patients with noninvasive placentas undergoing conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) were retrospectively enrolled. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured and compared from the volumetric analysis. Receiver operating characteristics (ROC) curve and logistic regression analyses were conducted to evaluate the diagnostic efficiency of different diffusion parameters for distinguishing invasive placentas. Comparisons between accreta lesions in patients with invasive placentas (AL) and lower 1/3 part of the placenta in patients with noninvasive placentas (LP) demonstrated that MD mean, D mean, and D* mean were significantly lower while ADC max and D max were significantly higher in invasive placentas (all p < 0.05). Multivariate analysis demonstrated that D mean, D max and D* mean differed significantly among all the studied parameters for invasive placentas. A combined use of these three parameters yielded an AUC of 0.86 with sensitivity, specificity, and accuracy of 84.91%, 76.60%, and 80%, respectively. The combined use of different IVIM parameters is helpful in distinguishing invasive placentas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.