Abstract

â–Ș Abstract This review takes a critical look at the cosmological scenario at the turn of the century by examining the available cosmological models in the light of the present observational evidence. The center stage is held by the big bang models, which are collectively referred to here as standard cosmology (SC) and its extensions. SC itself is characterized by a seven parameter set of models based on Einstein's general theory of relativity. The seven parameters are H0, ΩB, ΩDM, ΩΛ, ΩR (describing the background universe, and A, n (specifying the amplitude and power law index of initial fluctuation spectrum). The extended SC includes extrapolations of the SC to earlier epochs when the mean energies of the particles were greater than about 100 GeV. The strength of the SC is seen to lie in its successful prediction of the expansion of the universe, the abundance of light nuclei, and the spectrum and anisotropies of the cosmic microwave background (CMBR). The SC has led to a whole class of theories of structure formation, which are, in principle, testable observationally. The subject of twentieth century cosmology gained considerably from occasional ideas different from the SC; some of these are briefly outlined and placed in historical perspective. Currently there is only one alternative cosmology, the quasi steady state cosmology (QSSC), that has been developed to a stage where it can be compared with observations and also with the SC. Although the SC does appear quite successful, there are still many unresolved issues that keep the cosmological scene fairly open.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call