Abstract

Simulated annealing is a powerful optimization technique based on the annealing phenomenon in crystallization. In this paper we propose a simulated sintering technique which is analogous to the sintering process in material processing. In sintering one improves the quality of a processed material by heating it to a temperature close to the melting point. Analogously, we show that by starting out with a good initial configuration instead of a random configuration, and restricting uphill moves, we can considerably speed up simulated annealing. We use this idea for a standard cell placement program - GRIM in LTX2, an AT&T Bell Labs VLSI layout system. The initial configuration is produced either by changes to a layout the designer had done previously, or else by a fast program like min-cut. We obtain improvements of about 10% in chip area starting from a min-cut placement, in times about 3 times faster than our simulated annealing program (which itself is several times faster than other well known simulated annealing programs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call