Abstract
We study the standard 1 S 0 and the quasideuteron 3 S 1 − 3 D 1 pairing fields in asymmetric nuclear matter, using a Bonn meson-exchange interaction in a Dirac-Hartree-Fock-Bogoliubov approximation. As in earlier calculations, the standard pairing fields fall to zero at densities below saturation, due to relativistic effects. We obtain a quasideuteron field very similar to those found in nonrelativistic calculations at densities below saturation, both in symmetric and asymmetric nuclear matter. This field has the properties of a Bose-Einstein condensate at low densities and those of a BCS condensate at high densities. The quasideuteron pairing field in asymmetric nuclear matter is stable only when accompanied by standard 1 S 0 neutron-neutron and proton-proton pairing fields that are different from the fields obtained when the quasideuteron field is zero. The coupled pairing field configuration is the nuclear matter ground state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.