Abstract

The concept of topographic mapping is central to the understanding of the visual system at many levels, from the developmental to the computational. It is important to be able to relate different coordinate systems, e.g. maps of the visual field and maps of the retina. Retinal maps are frequently based on flat-mount preparations. These use dissection and relaxing cuts to render the quasi-spherical retina into a 2D preparation. The variable nature of relaxing cuts and associated tears limits quantitative cross-animal comparisons. We present an algorithm, “Retistruct,” that reconstructs retinal flat-mounts by mapping them into a standard, spherical retinal space. This is achieved by: stitching the marked-up cuts of the flat-mount outline; dividing the stitched outline into a mesh whose vertices then are mapped onto a curtailed sphere; and finally moving the vertices so as to minimise a physically-inspired deformation energy function. Our validation studies indicate that the algorithm can estimate the position of a point on the intact adult retina to within 8° of arc (3.6% of nasotemporal axis). The coordinates in reconstructed retinae can be transformed to visuotopic coordinates. Retistruct is used to investigate the organisation of the adult mouse visual system. We orient the retina relative to the nictitating membrane and compare this to eye muscle insertions. To align the retinotopic and visuotopic coordinate systems in the mouse, we utilised the geometry of binocular vision. In standard retinal space, the composite decussation line for the uncrossed retinal projection is located 64° away from the retinal pole. Projecting anatomically defined uncrossed retinal projections into visual space gives binocular congruence if the optical axis of the mouse eye is oriented at 64° azimuth and 22° elevation, in concordance with previous results. Moreover, using these coordinates, the dorsoventral boundary for S-opsin expressing cones closely matches the horizontal meridian.

Highlights

  • The retina projects directly and indirectly to a large number of areas in the central nervous system, such as the mammalian superior colliculus, lateral geniculate nucleus or visual cortex

  • Reconstructing the retinae of individual animals that have had retrograde tracer injected into primary visual areas enables comparisons of projection patterns across animals independent of distortions introduced by retinal dissection

  • Having reconstructed the retinae into a standard space, we quantified the projection patterns by deriving kernel density estimates (KDEs) of the underlying probability of data points appearing at any point in the retina and represented these estimates using contours that exclude 5%, 25%, 50% and 95% of the points (Figure 5C)

Read more

Summary

Introduction

The retina projects directly and indirectly to a large number of areas in the central nervous system, such as the mammalian superior colliculus, lateral geniculate nucleus or visual cortex. We have taken advantage of standard retinal space to measure the extent of the ipsilateral projection by making a composite plot of data from 7 different animals (Figure 5E), which shows that the average ipsilateral projection occupies a crescent in ventrotemporal retina.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call