Abstract

BackgroundData on the impact of species diversity on biomass in the Central Himalayas, along with stand structural attributes is sparse and inconsistent. Moreover, few studies in the region have related population structure and the influence of large trees on biomass. Such data is crucial for maintaining Himalayan biodiversity and carbon stock. Therefore, we investigated these relationships in major Central Himalayan forest types using non-destructive methodologies to determine key factors and underlying mechanisms.ResultsTropical Shorea robusta dominant forest has the highest total biomass density (1280.79 Mg ha−1) and total carbon density (577.77 Mg C ha−1) along with the highest total species richness (21 species). The stem density ranged between 153 and 457 trees ha−1 with large trees (> 70 cm diameter) contributing 0–22%. Conifer dominant forest types had higher median diameter and Cedrus deodara forest had the highest growing stock (718.87 m3 ha−1); furthermore, C. deodara contributed maximally toward total carbon density (14.6%) among all the 53 species combined. Quercus semecarpifolia–Rhododendron arboreum association forest had the highest total basal area (94.75 m2 ha−1). We found large trees to contribute up to 65% of the growing stock. Nine percent of the species contributed more than 50% of the carbon stock. Species dominance regulated the growing stock significantly (R2 = 0.707, p < 0.001). Temperate forest types had heterogeneous biomass distribution within the forest stands. We found total basal area, large tree density, maximum diameter, species richness, and species diversity as the predominant variables with a significant positive influence on biomass carbon stock. Both structural attributes and diversity influenced the ordination of study sites under PCA analysis. Elevation showed no significant correlation with either biomass or species diversity components.ConclusionsThe results suggest biomass hyperdominance with both selection effects and niche complementarity to play a complex mechanism in enhancing Central Himalayan biomass carbon stock. Major climax forests are in an alarming state regarding future carbon security. Large trees and selective species act as key regulators of biomass stocks; however, species diversity also has a positive influence and should also reflect under management implications.

Highlights

  • Data on the impact of species diversity on biomass in the Central Himalayas, along with stand structural attributes is sparse and inconsistent

  • Situated in the foothills of the Himalayan mountain ranges lie the Indian state of Uttarakhand; it constitutes the central portion of the Indian Himalayan Region (IHR) (Kafaltia and Kafaltia 2019)

  • The maximum stem density was recorded in 30–40 cm Diameter at breast height (DBH) class (21.6%) in F1, 20–30 cm DBH class (32.6%) in F2, 10–20 cm DBH class (23.5%) in F3, 30–40 cm DBH class (30%) in F4, 10–20 cm and 20–30 cm (30% each) DBH class in F5, 60–70 cm DBH class (17.5%) in F6, 10–20 cm DBH class (19.6%) in F7, and 30–40 cm DBH class (31%) in F8 (Fig. 2)

Read more

Summary

Introduction

Data on the impact of species diversity on biomass in the Central Himalayas, along with stand structural attributes is sparse and inconsistent. We found total basal area, large tree density, maximum diameter, species richness, and species diversity as the predominant variables with a significant positive influence on biomass carbon stock. Both structural attributes and diversity influenced the ordination of study sites under PCA analysis. It is evident that irrespective of their density, the large diameter trees (diameter > 60 cm) contribute significantly to biomass and their loss could yield a reduction in structural heterogeneity and the carbon capture potential of forests (Lutz et al 2018) These mature forests, are more resilient and provide long-term carbon pool reservoirs (Day et al 2014). The present study was undertaken with two broad objectives: (i) determination of growing stock, biomass, and carbon stock of major forest types in Central Himalaya along with their comparison with similar forest types to access their status, and (ii) understanding the effects of stand structural attributes and species diversity on biomass and carbon stocks

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call