Abstract

UV Raman spectra were measured using a novel experimental configuration. This configuration allows many of the difficulties associated with UV excitation and high-power pulsed laser sources to be mitigated. Large sample areas are imaged into the detection system allowing high power excitation sources to be used while simultaneously avoiding sample degradation and multi-photon absorption effects. Such large detection areas allow large numbers of molecular scatters to be probed even with minimal penetration depth. Alignment issues between sample and collection optics are also simplified. Several common solvents were studied using 213 nm light and their spectra reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.