Abstract

AbstractWarming temperatures are having a disproportionate effect on boreal ecosystems, influencing the establishment and growth of tree species across their respective ranges. However, less is known about how competitive interactions influence growth–climate relationships. We used tree‐ring data from 26 study plots (836 trees) to investigate how the growth patterns of white spruce (Picea glauca) respond to variation in competition and climate in southwest Alaska. Using linear mixed‐effects models, we compared growth against covariates for stand basal area, competition, climate (temperature, precipitation), and spruce beetle mortality. We characterized competition at the tree level using two distance‐dependent competition indices: Hegyi index and a height advantage index. Furthermore, we assumed that stand‐level competition increased with basal area. We found that high summer temperatures resulted in reduced growth in stands with higher basal area (i.e., the most crowded stands), but increased growth at sites with low basal area. Our results suggest that historically productive stands may show declines in growth under warmer conditions, with important implications for future stand structure and productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.