Abstract

Noncoding small RNAs play diverse, important biological roles through gene expression regulation. However, their low expression levels make it difficult to identify new small RNA species and study their functions, calling for the development of detection schemes with higher simplicity, sensitivity, and specificity. Herein, we reported a straightforward assay that combined the stand-alone rolling circle amplification (RCA) with capillary electrophoresis (CE) for specific and sensitive detection of small RNAs in biological samples. In order to enhance the overall reaction efficiency and simplify the procedure, RCA was not preceded with ligation, and a preformed circular probe was employed as the template for the target small RNA-primed isothermal amplification. The long RCA product was digested and analyzed by CE. Two DNA polymerases, the Phi29 and Bst, were compared for their detection performance. Bst is superior in the aspects of specificity, procedure simplicity, and reproducibility, while Phi29 leads to a 5-fold lower detection limit and is able to detect as low as 35 amol of the target small RNA. Coamplification of an internal standard with the target and employment of the RNase A digestion step allow accurate and reproducible quantification of low amounts of small RNA targets spiked into hundreds of nanograms of the plant total RNA extract with a recovery below 110% using either enzyme. Our assay can be adapted to a capillary array system for high-throughput screening of small RNA expression in biological samples. Also, the one-step isothermal process has the potential to conveniently amplify a very limited amount of the RNA samples, e.g., RNA extracted from only a few cells, inside the capillary column or on a microchip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.