Abstract

Over the last few years, hydrogen technologies have established themselves as key enablers in the medium and long-term development of a new energy model that offers greater sustainability and independence than the present-day one. In this respect, the integration of water electrolysis with renewable energy-based systems can play an important part in the large-scale production of sustainable hydrogen. This paper reports on the complete experimental characterisation of a 1 Nm3 h−1 alkaline water electrolyser located in the Public University of Navarre (UPNa). Specifically, a study was made of the electrical performance, hydrogen production rate, purity of the gases generated and energy efficiency, for a range of operating currents (40–120 A), temperatures (35–65 °C) and pressures (5–25 bar). Additionally, an experimental study was conducted on the electrolyser operation under conditions that are characteristic of a stand-alone wind power and PV-based renewable energy system, installed at the UPNa. The results obtained for the wind power and PV emulations showed that the electrolyser performed correctly, with regard to balance of plant and its principal electrochemical characteristics. Furthermore, the mean energy efficiency of the electrolyser was 77.7% for the wind power emulation, and 78.6% for the PV emulation on a day with stable irradiance, and 78.1% on a day with highly variable irradiance (day with scattered clouds).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.