Abstract
Transcription factors (TFs) drive significant cellular changes in response to environmental cues and intercellular signaling. Neighboring cells influence TF activity and, consequently, cellular fate and function. Spatial transcriptomics (ST) captures mRNA expression patterns across tissue samples, enabling characterization of the local microenvironment. However, these datasets have not been fully leveraged to systematically estimate TF activity governing cell identity. Here, we present STAN ( S patially informed T ranscription factor A ctivity N etwork), a linear mixed-effects computational method that predicts spot-specific, spatially informed TF activities by integrating curated TF-target gene priors, mRNA expression, spatial coordinates, and morphological features from corresponding imaging data. We tested STAN using lymph node, breast cancer, and glioblastoma ST datasets to demonstrate its applicability by identifying TFs associated with specific cell types, spatial domains, pathological regions, and ligand‒receptor pairs. STAN augments the utility of STs to reveal the intricate interplay between TFs and spatial organization across a spectrum of cellular contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.