Abstract
Staling indicators (texture, amylopectin retrogradation, water status and proton molecular mobility) in a high-gluten bread (25% flour substitution and water absorption at 500 Brabender Unit) were compared to a control during 1 week of storage. The contribution of macroscopic crumb to crust water migration on frozen water, molecular mobility and retrograded amylopectin was evaluated in bread loaves and bread crumb stored in NMR tubes. High-gluten bread was softer and had increased volume, cohesiveness, springiness, moisture and frozen water contents than the control, with comparable amylopectin retrogradation. An increased proton molecular mobility was observed in fresh high-gluten bread. In condition of no occurrence of macroscopic water migration, proton molecular mobility indicated reduced changes in breads during storage, suggesting the important role played by migration in the staling process. These changes were further reduced in the high-gluten bread, indicating an influence of the larger moisture content but also a contribution of gluten in regulating molecular changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.