Abstract

Today, stainless is one of the most frequently used biomaterials for internal fixation devices because of a favorable combination of mechanical properties, corrosion resistance and cost effectiveness when compared to other metallic implant materials. The biocompatibility of implant quality stainless steel has seen been proven by successful human for decades. Composition, microstructure and tensile properties of stainless steel used for internal fixation is standardized in ISO and ASTM material specifications. Metallurgical requirements are stringent to ensure sufficient corrosion resistance, nonmagnetic response, and satisfactory mechanical properties. Torsional properties of stainless steel screws are different from titanium screws. Stainless steel bone screws are easier to handle because the surgeon can feel the onset of plastic deformation and this provides adequate prewarning to avoid overtorquing the screw. New nickel-free stainless steels have been recently developed primarily to address the issue of nickel sensitivity. These stainless steels also have superior mechanical properties and better corrosion resistance. The Ni-free compositions appear to possess an extraordinary combination of attributes for potential implant applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.