Abstract

With the awakening of environmental awareness, the importance of air quality to human health and the proper functioning of social mechanisms is becoming increasingly prominent. The low cost and high efficiency of catalytic technique makes it a natural choice for achieving deep air purification. Stainless steel alloys have demonstrated their full potential for application in a variety of catalytic fields. The diversity of 3D networks or fibrous structures increases the turbulence within the heterogeneous catalysis, balance the temperature distribution in the reaction bed and, in combination with a highly thermally conductive skeleton, avoid agglomeration and deactivation of the active components; corrosion resistance and thermal stability are adapted to highly endothermic/exothermic or corrosive reaction environments; oxide layers formed by bulk transition metals activated by thermal treatment or etching can significantly alter the physico-chemical properties between the substrate and active species, further improving the stability of stainless steel catalysts; suitable electronic conductivity can be applied to the electrothermal catalysis, which is expected to provide guidance for the reduction of intermittent emission exhausts and the storage of renewable energy. The current applications of stainless steel as catalyst or support in the air purification have covered soot particle capture and combustion, catalytic oxidation of VOCs, SCR, and air sterilization. This paper summarizes several preparation methods and presents the relationships between the preparation process and the activity, and reviews its application and the current status of research in atmospheric environmental management, proposing the advantages and challenges of the stainless steel-based catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call