Abstract

Basal cell carcinoma (BCC) is the most common malignancy in Caucasians. Nonlinear microscopy has been previously utilized for the imaging of BCC, but the captured images do not correlate with H&E staining. Recently, Freudiger et al. introduced a novel method to visualize tissue morphology analogous to H&E staining, using coherent anti-Stokes Raman scattering (CARS) technique. In our present work, we introduce a novel algorithm to post-process images obtained from dual vibration resonance frequency (DVRF) CARS measurements to acquire high-quality pseudo H&E images of BCC samples. We adapted our CARS setup to utilize the distinct vibrational properties of CH3 (mainly in proteins) and CH2 bonds (primarily in lipids). In a narrowband setup, the central wavelength of the pump laser is set to 791nm and 796nm to obtain optimal excitation. Due to the partial overlap of the excitation spectra and the 5-10nm FWHM spectral bandwidth of our lasers, we set the wavelengths to 790nm (proteins) and 800nm (lipids). Nonresonant background from water molecules also reduces the chemical selectivity which can be significantly improved if we subtract the DVRF images from each other. As a result, we acquired two images: one for "lipids" and one for" proteins" when we properly set a multiplication factor to minimize the non-specific background. By merging these images, we obtained high contrast H&E "stained" images of BBC's. Nonlinear microscope systems upgraded for real time DVRF CARS measurements, providing pseudo H&E images can be suitable for in vivo assessment of BCC in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.