Abstract
In real life, group activity recognition plays a significant and fundamental role in a variety of applications, e.g. sports video analysis, abnormal behavior detection, and intelligent surveillance. In a complex dynamic scene, a crucial yet challenging issue is how to better model the spatio-temporal contextual information and inter-person relationship. In this paper, we present a novel attentive semantic recurrent neural network (RNN), namely, stagNet, for understanding group activities and individual actions in videos, by combining the spatio-temporal attention mechanism and semantic graph modeling. Specifically, a structured semantic graph is explicitly modeled to express the spatial contextual content of the whole scene, which is further incorporated with the temporal factor through structural-RNN. By virtue of the “factor sharing” and “message passing” mechanisms, our stagNet is capable of extracting discriminative and informative spatio-temporal representations and capturing inter-person relationships. Moreover, we adopt a spatio-temporal attention model to focus on key persons/frames for improved recognition performance. Besides, a body-region attention and a global-part feature pooling strategy are devised for individual action recognition. In experiments, four widely-used public datasets are adopted for performance evaluation, and the extensive results demonstrate the superiority and effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.