Abstract

In this paper, the effects of free-stream turbulence on stagnation-point flow and heat transfer are investigated through large eddy simulation (LES) of homogeneous isotropic turbulence impinging upon an isothermal elliptical leading edge. Turbulent mean flow and Reynolds stress profiles along the stagnation streamline, where the mean flow is strain dominant, and at different downstream locations, where the mean flow gradually becomes shear-dominated, are used to characterize evolution of the free-stream turbulence. The Reynolds stress budgets are also obtained, and the turbulence anisotropy is analysed through the balance between the mean flow strain and the velocity pressure gradient correlation. In the presence of free-stream turbulence, intense quasi-streamwise vortices develop near the leading edge with a typical diameter of the order of the local boundary-layer thickness. These strong vortices cause the thermal fluxes to peak at a location much closer to the wall than that of the Reynolds stresses, resulting a greater sensitivity to free-stream turbulence for the heat transfer than the momentum transfer. The heat transfer enhancement obtained by the present LES agrees quantitatively with available experimental measurements. The present LES results are also used to examine the eddy viscosity and pressure-strain correlations in Reynolds stress turbulence models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call