Abstract

In this study, the numerical investigation of stagnation point flow past a stretching sheet in nanofluid with velocity slip condition and constant wall temperature is considered. The governing equations for the model which is in non linear partial differential equations are first transformed to ordinary differential equation by using similarity transformation. This ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg method. Numerical solutions are obtained for the reduced Nusselt, Sherwood number and skin friction coefficient. Further, the effects of slip parameter on Nusselt and Sherwood number are analyzed and discussed. It is graphically shown that the velocity slip parameter has a capability to enhanced the skin friction coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.