Abstract

The implication of a stagnation-point flow together with the influence of activation energy in a Williamson fluid, which consists of tiny particles, over an expansive plate is analyzed numerically. Conditions of convective heat and mass motion with features of irregular movement and thermal-migration of particles influenced by viscous dissipation and convective heat surface condition are checked in the study. The conversion of the model equations from the initially formulated partial derivatives to ordinary ones is implemented by similarity transformations while an unconditionally stable Runge-Kutta-Fehlberg integration plus shooting technique are then used to complete the integration. Various interesting effects of the physical parameters are demonstrated graphically and explained appropriately in order to make accurate predictions. Moreover, the accuracy of the solution is verified by comparing the values of the skin friction factor with earlier reported ones in literature under limiting constraints. It is worth mentioning that the velocity profiles flatten down as the magnitude of the magnetic field factors expands but this causes a boost in the fluid’s temperature. The concentration field also appreciates with activation energy but depreciates with chemical reaction and Schmidt number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.