Abstract

AbstractA numerical study is performed to discuss the nonaligned stagnation of a rate type fluid over a convective surface. The rheology of the fluid is presented by the constitutive equation of the Maxwell fluid model. Buongiorno's model is used to elaborate on the effects of Brownian motion and thermophoresis and motile microorganisms are introduced for the stability of the nanoparticles. The governing equations were solved by the implicit finite difference method. Graphical illustrations for velocity, temperature, nanoparticle concentration and motile microorganism profiles for various involved parameters are presented for both convective and nonconvective surfaces. It is depicted that the temperature, nanoparticle, and microorganism concentration profiles decease while both axial and tangential velocities increase with the velocity ratio parameter for both Newtonian and Maxwellian fluids. The magnitude of temperature, nanoparticle, and microorganism concentration profiles is large for the nonconvective surface as compared to the convective surface. The Nusselt number, Sherwood number, and motile organism number decrease as we move from Newtonian fluid to non‐Newtonian fluid. Furthermore, the increase in the Brownian motion parameter and thermophoresis parameter decreases the density of the motile organism over the convective as well as nonconvective surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call