Abstract

A theoretical study is made in the region near the stagnation point when a lighter incompressible viscoelastic fluids impinges orthogonally on the surface of another quiescent heavier incompressible viscous fluid. Similarity solutions of the momentum balance equations for both fluids are equalized at the interface. It is noted that an exact boundary layer solution is obtained for the lower lighter fluid. The velocity of the lower fluid is independent of lateral interface velocity but the velocity of the upper viscoelastic fluid increases with increasing lateral interface velocity. It is observed that lateral interface velocity increases with increasing viscoelastic parameter for fixed values of density and viscosity ratio of the two fluids. The convective heat transfer is investigated base on the similarity solutions for the temperature distribution of the two fluids. The interface temperature increases with increasing viscoelastic parameter of the upper viscoelastic fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.