Abstract

Relativistic electron beam transport through a high-density, magnetized plasma is studied numerically and theoretically. An electron beam injected into a cold plasma excites Weibel and two-stream instabilities that heat the beam and saturate. In the absence of an applied magnetic field, the heated beam continues to propagate. However, when a magnetic field of particular strength is applied along the direction of beam propagation, a secondary instability of off-angle whistler modes is excited. These modes then couple nonlinearly creating a large amplitude parallel-propagating whistler that stops the beam. Here, we will show these phenomena in detail and explain the mechanism of whistler mediated beam stagnation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call