Abstract

Effective differentiation of the infection stages of omicron can provide significant assistance in transmission control and treatment strategies. The combination of LIBS serum detection and machine learning methods, as a novel disease auxiliary diagnostic approach, has a high potential for rapid and accurate staging classification of Omicron infection. However, conventional single-spectrometer LIBS serum detection methods focus on detecting the spectra of major elements, while trace elements are more closely related to the progression of COVID-19. Here, we proposed a rapid analytical method with dual-spectrometer LIBS (DS-LIBS) assisted with machine learning to classify different infection stages of omicron. The DS-LIBS, including a broadband spectrometer and a narrowband spectrometer, enables synchronous collection of major and trace elemental spectra in serum, respectively. By employing the RF machine learning models, the classification accuracy using the spectra data collected from DS-LIBS can reach 0.92, compared to 0.84 and 0.73 when using spectra data collected from single-spectrometer LIBS. This significant improvement in classification accuracy highlights the efficacy of the DS-LIBS approach. Then, the performance of four different models, SVM, RF, IGBT, and ETree, is compared. ETree demonstrates the best, with cross-validation and test set accuracies of 0.94 and 0.93, respectively. Additionally, it achieves classification accuracies of 1.00, 0.92, 0.92, and 0.89 for the four stages B1-acute, B1-post, B2, and B3. Overall, the results demonstrate that DS-LIBS combined with the ETree machine learning model enables effective staging classification of omicron infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call