Abstract

The numerical modeling of wave field in porous media generally requires more computation time than that of acoustic or elastic media. Usually used finite difference methods adopt finite difference operators with fixed-order accuracy to calculate space derivatives for a heterogeneous medium. A finite difference scheme with variable-order accuracy for acoustic wave equation has been proposed to reduce the computation time. In this paper, we develop this scheme for wave equations in porous media based on dispersion relation with high-order staggered-grid finite difference (SFD) method. High-order finite difference operators are adopted for low-velocity regions, and low-order finite difference operators are adopted for high-velocity regions. Dispersion analysis and modeling results demonstrate that the proposed SFD method can decrease computational costs without reducing accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.