Abstract
Staggered spinning is a cost-effective method to manufacture axisymmetric components, especially for the ultrathin cylindrical parts. However, due to the complex material flow behavior during staggered spinning of Ni-based thin-walled cylindrical parts, the accurate control of geometric precision is still a great challenge. In this work, a three-dimensional (3D) finite element model (FEM) is developed to investigate the effects of staggered spinning parameters on the dimensional accuracy of a thin-walled Hastelloy C-276 cylindrical part. It is found that the deviations of wall thickness and inner diameter are sensitive to spinning parameters. Based on the results from the finite element analysis, the optimized spinning parameters are obtained for the studied thin-walled cylindrical part, i.e., an appropriate wall thickness reduction range is 30%–40% during the single pass spinning. Meanwhile, the effects of feed ratio on the uniformities of wall thickness and inner diameter are significant, and a suitable feed ratio is 0.8 mm/r. Finally, the industrial three-roller staggered spinning experiments are carried out to verify a fact that the developed FEM, as well as the optimized spinning parameters, can be effectively used for the staggered spinning of thin-walled Hastelloy C-276 cylindrical parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.