Abstract

Extreme ultraviolet (EUV) materials are deemed as critical to enable and extend the EUV lithography technology. Currently both chemically amplified resist (CAR) and metal-oxide resist (MOR) platforms are candidates to print tight features on wafer, however patterning requirements, process tonality (positive or negative), illumination settings and reticle tonality (dark or bright) play a fundamental role on the material performance and in consequence on the material choice. In this work we focus on the patterning of staggered pillars using a single EUV exposure, and this by looking at the lithographic and etching performance of CAR and MOR platforms, using metrics as process window, local critical dimension uniformity (LCDU), pillar edge roughness (PER), pillar placement error (PPE) and (stochastic) nano-failures. As a bright field reticle shows a lower aerial image contrast to print pillars compared to the aerial image of contact holes using a dark field reticle, we also investigate alternative patterning solutions such as the tone reversal process (TRP) to pattern pillars from contact holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call