Abstract

We introduce a high performance parallelization to the PSTD solution of Maxwell equations by employing the fast Fourier transform on local Fourier basis. Meanwhile a reformatted derivative operator allows the adoption of a staggered-grid such as the Yee lattice in PSTD, which can overcome the numerical errors in a collocated-grid when spatial discontinuities are present. The accuracy and capability of our method are confirmed by two analytical models. In two applications to surface tissue optics, an ultra wide coherent backscattering cone from the surface layer is found, and the penetration depth of polarization gating identified. Our development prepares a tool for investigating the optical properties of surface tissue structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.