Abstract
Excitonic effects on Stark-ladder transitions have been investigated experimentally and theoretically in a novel asymmetric double-well superlattice consisting of wide and narrow GaAs quantum wells separated by a constant AlAs barrier. In this superlattice strong electron resonance can occur under the applied electric field between the wide and narrow wells. It is found that due to existence of the two different heavy-hole localized states two types of excitonic resonances which are staggered in field are observed in the low-temperature photocurrent spectra. This field difference in the staggered exciton resonances is rigorously explained by variational calculations of the changes in the direct and indirect exciton binding energies with the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.