Abstract

Using a cultured wholemount technique we have studied the morphological differentiation of ganglion cells in the retina of the rat and cat, during normal development. In both species the differentiation of ganglion cells begins in embryonic life, before embryonic day (E) 17 in the rat and E36 in the cat. It is useful to describe the morphological differentiation of ganglion cells as occurring in three stages. In the first stage, each germinal cell becoming a ganglion cell extends an axon into the fibre layer of the retina and towards the optic disc, and the soma of the cell moves towards the ganglion cell layer. As the soma approaches the ganglion cell layer, the processes that attach its poles to the inner and outer surfaces of the retina are withdrawn. When the soma reaches the ganglion cell layer, a stage of active dendritic growth begins, which lasts until shortly before birth in the cat and until several days after birth in the rat. The cell extends stem dendrites that branch profusely and are commonly tipped by growth cones. The major morphological classes of ganglion cell become distinct in the latter part of stage 2, as do the centroperipheral gradients in ganglion cell size apparent in the cat. During the third stage, the dendritic trees of ganglion cells no longer branch or extend by means of active growth cones. Very considerable growth of all parameters of the cell (soma size, dendrite calibre and length, axon calibre) occurs nevertheless, presumably by interstitial addition of membrane throughout the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call