Abstract

AbstractUsing two orthogonal external stimuli, programmable staged surface patterning and self‐assembly of inorganic nanoparticles (NPs) was achieved. For gold NPs capped with end‐grafted poly(styrene‐block‐(4‐vinylbenzoic acid)), P(St‐block‐4VBA), block copolymer ligands, surface‐pinned micelles (patches) formed from NP‐adjacent PSt blocks under reduced solvency conditions (Stimulus 1); solvated NP‐remote P(4VBA) blocks stabilized the NPs against aggregation. Subsequent self‐assembly of patchy NPs was triggered by crosslinking the P(4VBA) blocks with copper(II) ions (Stimulus 2). Block copolymer ligand design has a strong effect on NP self‐assembly. Small, well‐defined clusters assembled from NPs functionalized with ligands with a short P(4VBA) block, while NPs tethered with ligands with a long P(4VBA) block formed large irregularly shaped assemblies. This approach is promising for high‐yield fabrication of colloidal molecules and their assemblies with structural and functional complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call