Abstract

Phosphogypsum (PG) is an industrial by-product of the transformation of phosphate rocks. For decades, PG has been a source of environmental concern due to the massive amount produced thus far, i.e., 7 billion tons, with a current production rate of 200-280 million tons per year. Phosphate minerals contain various impurities that precipitate and concentrate within PG. These impurities hinder PG usability in various sectors. This paper aims to purify PG using an innovative process based on staged valorization of PG. Initially, PG dissociation by ethylenediaminetetraacetic acid (EDTA) was optimized. After screening of different parameters and monitoring the ionic conductivity of solutions, it was disclosed that a pH-dependent solubilization process in the presence of EDTA resulted in high solubility of PG, up to 11.82g/100mL at pH > 11. Subsequently, a recovery of the purified PG by selective precipitation of calcium sulfate dihydrate (CSD) from obtained filtrate through pH adjustment to 3.5 were investigated. An abatement of 99.34% Cr, 97.15% Cd, 95.73% P2O5, 92.75% Cu, 92.38% Al2O3, 91.16% Ni, 74.58% Zn, 72.75% F, 61.43% MgO, 58.8% Fe2O3, 56.97% K2O, and 55.41% Ba was achieved. The process relied on the variation of EDTA chelation properties towards monovalent, divalent, and trivalent cations at different pHs. According to the findings of this study, a staged purification process in the presence of EDTA is an effective method for removing impurities from the industrial PG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.