Abstract

A novel staged gasification process aiming to produce heat and power from biomass residue materials has been investigated. The process comprises a fast pyrolysis reactor, coupled with an autothermal catalytic reformer to convert the pyrolysis vapors into a clean fuel gas. Because of the relatively low temperature in the first stage, inorganic contaminants are retained in the fast pyrolysis char byproduct, enabling the use of catalysts in the second stage to produce a virtual tar free product gas. The char byproduct is combusted in the pyrolysis system at moderate temperature, thus preventing potential ash-melt problems. The influence of the air-fuel ratio and mixing behavior, the catalyst composition, and the biomass composition on the process performance were determined using a 1–5 kg/h experimental setup. Six biomass materials ranging from clean wood to sewage sludge were converted without any operational problems. Tar concentrations below 10 mg/Nm3 could be obtained, which is sufficiently low for direc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.