Abstract

Humic acid (HA) as a natural coordinating agent was employed to modify the Fenton-like process by promoting the redox cycle of Fe(III)/Fe(II) and enhancing the pH tolerance. However, the roles of coordinating stages of HA-Fe(III) and the dynamic changes of iron species remain unclear. In this study, HA was introduced into the H2O2-Fe(III) process to investigate the accelerating roles of coordinating stages and systematically reveal the mechanism via the reactive oxygen species (ROS) identification, HA-Fe(III)/Fe(II) redox cycles tracking, electrochemical and kinetic analysis. Results suggested that two reaction stages were separated concerning the enhancement for HA in H2O2-Fe(III) process, including coordinating stage (slow rate) and promoting the redox stage (fast rate). HA-Fe(III) was identified as the major contributor, along with hydroxyl radical (·OH) and superoxide radical (·O2-) as the dominant ROS with formation rates calculated as 7.0 × 10−9 and 2.1 × 10−3 M s−1 via the steady-state model. Based on the density-functional theory (DFT) calculations and HPLC-MS/MS analysis, three degradation pathways of 2,4-Dichlorophenol were proposed with ten intermediate products identified, and the ecotoxicity was evaluated through Ecological Structure Activity Relationships (ECOSAR) program. This study unveiled the mechanism of HA on enhancing water decontamination via H2O2-Fe(III) process in stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.