Abstract

Shifting the field of developmental toxicology toward evaluation of pathway perturbation requires a quantitative definition of normal developmental dynamics. This project examined a publicly available dataset to quantify pathway dynamics during testicular development and spermatogenesis and anchor toxicant-perturbed pathways within the context of normal development. Genes significantly changed throughout testis development in mice were clustered by their direction of change using K-means clustering. Gene Ontology terms enriched among each cluster were identified using MAPPfinder. Temporal pathway dynamics of enriched terms were quantified based on average expression intensity for all genes associated with a given term. This analysis captured processes that drive development, including the peak in steroidogenesis known to occur around gestational day 16.5 and the increase in meiosis and spermatogenesis-related pathways during the first wave of spermatogenesis. Our analysis quantifies dynamics of pathways vulnerable to toxicants and provides a framework for quantifying perturbation of these pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.