Abstract

Dentinogenesis is a complex and multistep process, which is regulated by various growth factors, including members of the fibroblast growth factor (FGF) family. Both positive and negative effects of FGFs on dentinogenesis have been reported, but the underlying mechanisms of these conflicting results are still unclear. To gain a better insight into the role of FGF2 in dentinogenesis, we used dental pulp cells from various transgenic mice, in which fluorescent protein expression identifies cells at different stages of odontoblast differentiation. Our results showed that the continuous exposure of pulp cells to FGF2 inhibited mineralization and revealed both the stimulatory and inhibitory effects of FGF2 on the expression of markers of dentinogenesis and various transgenes. During the proliferation phase of in vitro growth, FGF2 increased the expression of markers of dentinogenesis and the percentages of dentin matrix protein 1/green fluorescent protein (DMP1-GFP)-positive functional odontoblasts and dentin sialophosphoprotein (DSPP)-Cerulean-positive odontoblasts. Additional exposure to FGF2 during the differentiation/mineralization phase of in vitro growth decreased the extent of mineralization and the expression of markers of dentinogenesis and of the DMP1-GFP and DSPP-Cerulean transgenes. Recovery experiments showed that the inhibitory effects of FGF2 on dentinogenesis were related to the blocking of the differentiation of cells into mature odontoblasts. These observations together showed the stage-specific effects of FGF2 on dentinogenesis by dental pulp cells, and they provide critical information for the development of improved treatments for vital pulp therapy and dentin regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call