Abstract

This study is part of a large project carried out at the Cairo University, Egypt, and focused on assessing physiological and biochemical changes in Aiolopus thalassinus under the influence of environmental pollution with heavy metals (Pb, Cd, Cu, and Zn). The study aimed to investigate parameters related to maintaining redox balance, with particular emphasis on stage-, sex- and tissue-dependent differences in H2O2 and glutathione (GSH) levels and activity of selected enzymes involved in GSH metabolism. A noticeable increase in the concentration of H2O2 was found, especially in the gut of 5th instar nymphs and females from the highly polluted site. An increase in GSH concentration was significant, especially in the gut of adult A. thalassinus from the high polluted site. However, recycling of reduced form of glutathione in the gut by glutathione reductase (GR) was relevant only for females from the high polluted site. Nymphs and females generally showed higher glutathione S-transferase (GST) activity, especially in the gut. These stage- and sex-related differences can result from different growth dynamic and various reproductive functions of nymphs and both sexes. The digestive track is in direct contact with xenobiotics consumed with food. Nymphs are characterized by vigorous growth, they feed intensively, and their development processes are associated with substantial oxygen consumption. Also, maintaining the antioxidant system at a high level can be more important for females than males due to egg production over a long period. It appears that de novo GSH synthesis is a favorable and cost-effective adaptation mechanism for A. thalassinus living in the high polluted site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call