Abstract

This paper develops methods to determine appropriate staffing levels in call centers and other many-server queueing systems with time-varying arrival rates. The goal is to achieve targeted time-stable performance, even in the presence of significant time variation in the arrival rates. The main contribution is a flexible simulation-based iterative-staffing algorithm (ISA) for the Mt/G/st + G model—with nonhomogeneous Poisson arrival process (the Mt) and customer abandonment (the + G). For Markovian Mt/M/st + M special cases, the ISA is shown to converge. For that Mt/M/st + M model, simulation experiments show that the ISA yields time-stable delay probabilities across a wide range of target delay probabilities. With ISA, other performance measures—such as agent utilizations, abandonment probabilities, and average waiting times—are stable as well. The ISA staffing and performance agree closely with the modified-offered-load approximation, which was previously shown to be an effective staffing algorithm without customer abandonment. Although the ISA algorithm so far has only been extensively tested for Mt/M/st + M models, it can be applied much more generally—to Mt/G/st + G models and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.