Abstract
Given a flat, finite group scheme G finitely presented over a base scheme we introduce the notion of ramified Galois cover of group G (or simply G-cover), which generalizes the notion of G-torsor. We study the stack of G-covers, denoted with G, mainly in the abelian case, precisely when G is a finite diagonalizable group scheme over . In this case, we prove that G is connected, but it is irreducible or smooth only in few finitely many cases. On the other hand, it contains a “special” irreducible component , which is the closure of G and this reflects the deep connection we establish between G and the equivariant Hilbert schemes. We introduce “parametrization” maps from smooth stacks, whose objects are collections of invertible sheaves with additional data, to and we establish sufficient conditions for a G-cover in order to be obtained (uniquely) through those constructions. Moreover, a toric description of the smooth locus of is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.