Abstract

For a multi-stack fuel cell system (MFCS), the optimal stacks allocation result with a single optimization index cannot meet the MFCS requirements under various operating conditions. In this work, an MFCS stacks multi-objective allocation optimization method is proposed. A multi-objective optimization model of MFCS stacks allocation with boundary conditions is established to obtain the optimal MFCS stacks allocation scheme. The minimum life-cycle cost (LCC) is selected as an optimization objective to investigate the mathematical modeling process of the stacks optimization allocation problem. The different optimization indexes, application scenarios, stack unit cost trends, hydrogen and stack retail prices, stack characteristics, and hydrogen unit usage cost weights have an impact on the minimum LCC-based MFCS stacks allocation results. As a result, compared to the conventional equal allocation MFCS, the minimum LCC-based stacks allocation MFCS could save 0.06 kg per 100 km of hydrogen for a 240 kW MFCS under the C-WTVC driving cycle. Finally, the multi-objective optimization method for determining the optimal MFCS stacks allocation scheme is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call