Abstract

Tunable phonon transport properties of two-dimensional materials are desirable for effective heat management in various application scenarios. Here, we demonstrate by first-principles calculations and Boltzmann transport theory that the lattice thermal conductivity of siligene could be efficiently engineered by forming various stacking configurations. Unlike few-layer graphene, the stacked siligenes are found to be covalently bonded along the out-of-plane direction, which leads to unique dependence of the thermal conductivity on both the stacking order and layer number. Due to the restricted flexural phonon scattering induced by the horizontal reflection symmetry, the AA stacking configuration of bilayer siligene exhibits obviously higher thermal conductivity compared with the AB stacking. In addition, we observe increasing thermal conductivity with the layer number, as evidenced by the reduced phonon scattering phase space and Grüneisen parameter. Interestingly, the Fuchs-Sondheimer model works well for the thickness-dependent thermal conductivity of stacked siligenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call