Abstract

Like the twisting control in magic-angle twisted bilayer graphene, the stacking control is another mechanical approach to manipulate the fundamental properties of solids, especially the van der Waals materials. We explore the stacking-induced magnetic frustration and the spiral spin liquid on a multilayer triangular lattice antiferromagnet where the system is built from ABC stacking with competing intralayer and interlayers couplings. By combining the nematic bond theory and the self-consistent Gaussian approximation, we establish the phase diagram for this ABC-stacked multilayer magnet. It is shown that the system supports a wide regime of spiral spin liquid with multiple degenerate spiral lines in the reciprocal space, separating the low-temperature spiral order and the high-temperature featureless paramagnet. The transition to the spiral order from the spiral spin liquid regime is first order. We further show that the spiral-spin-liquid behavior persists even with small perturbations such as further neighbor intralayer exchanges. The connection to the ABC-stacked magnets, the effects of Ising or planar spin anisotropy, and the outlook on the stacking-engineered quantum magnets are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.