Abstract
Abstract A numerical model is developed for prediction of the process-induced thermal residual stresses in thermoplastic composite laminates. The model addresses the development of the residual stress state in fracture-critical free-edge regions as well as through-thickness stress variations. The current approach provides a unique capability for the investigation of the influence of thermal processing and structural parameters on the resulting buildup of residual stresses during manufacturing. Therefore, it can assist in the design and analysis of thermoplastic composites to tailor mechanical and strength characteristics. Thermal processing considered here includes solidification from the molten state at a specific surface cooling rate, and application of a posterior annealing cycle. A significant reduction in the free-edge stresses is obtained via a quench/anneal cycle in comparison to the recommended nominal cooling from the melt. Alteration of the stacking sequence of the plies in the laminate can further reduce the magnitude of the interlaminar stresses. Results are shown for the case of a quasi-isotropic APC-2 (graphite/PEEK) laminate configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.