Abstract

Pyramiding of S5 - n and f5 - n cumulatively improved seed-setting rate of indica-japonica hybrids, which provided an effective approach for utilization of inter-subspecific heterosis in rice breeding. Breeding for indica-japonica hybrid rice is an attractive approach to increase rice yield. However, hybrid sterility is a major obstacle in utilization of inter-subspecific heterosis. Wide-compatibility alleles can break the fertility barrier between indica and japonica subspecies, which have the potential to overcome inter-subspecific hybrid sterility. Here, we improved the compatibility of an elite indica restorer line 9311 to a broad spectrum of japonica varieties, by introducing two wide-compatibility alleles, S5-n and f5-n, regulating embryo-sac and pollen fertility, respectively. Through integrated backcross breeding, two near isogenic lines harboring either S5-n or f5-n and a pyramiding line carrying S5-n plus f5-n were obtained, with the recurrent parent genome recovery of 99.95, 99.49, and 99.44 %, respectively. The three lines showed normal fertility when crossed to typical indica testers. When testcrossed to five typical japonica varieties, these lines allowed significant increase of compatibility with constant agronomic performance. The introgressed S5-n could significantly improve 14.7-32.9 % embryo-sac fertility in indica-japonica hybrids. In addition, with the presence of f5-n fragment, S5-n would increase the spikelet fertility from 9.5 to 21.8 %. The introgressed f5-n fragment greatly improved anther dehiscence, embryo-sac and pollen fertility in indica-japonica hybrids, thus leading to improvement of spikelet fertility from 20.4 to 30.9 %. Moreover, the pyramiding line showed 33.6-46.7 % increase of spikelet fertility, suggesting cumulative effect of S5-n and f5-n fragment in seed-set improvement of inter-subspecific hybrids. Our results provided an effective approach for exploiting heterosis between indica and japonica subspecies, which had a profound implication in rice breeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.